48 research outputs found

    Harnessing the power of diffusion models for plant disease image augmentation

    Get PDF
    IntroductionThe challenges associated with data availability, class imbalance, and the need for data augmentation are well-recognized in the field of plant disease detection. The collection of large-scale datasets for plant diseases is particularly demanding due to seasonal and geographical constraints, leading to significant cost and time investments. Traditional data augmentation techniques, such as cropping, resizing, and rotation, have been largely supplanted by more advanced methods. In particular, the utilization of Generative Adversarial Networks (GANs) for the creation of realistic synthetic images has become a focal point of contemporary research, addressing issues related to data scarcity and class imbalance in the training of deep learning models. Recently, the emergence of diffusion models has captivated the scientific community, offering superior and realistic output compared to GANs. Despite these advancements, the application of diffusion models in the domain of plant science remains an unexplored frontier, presenting an opportunity for groundbreaking contributions.MethodsIn this study, we delve into the principles of diffusion technology, contrasting its methodology and performance with state-of-the-art GAN solutions, specifically examining the guided inference model of GANs, named InstaGAN, and a diffusion-based model, RePaint. Both models utilize segmentation masks to guide the generation process, albeit with distinct principles. For a fair comparison, a subset of the PlantVillage dataset is used, containing two disease classes of tomato leaves and three disease classes of grape leaf diseases, as results on these classes have been published in other publications.ResultsQuantitatively, RePaint demonstrated superior performance over InstaGAN, with average FrĆ©chet Inception Distance (FID) score of 138.28 and Kernel Inception Distance (KID) score of 0.089 Ā± (0.002), compared to InstaGANā€™s average FID and KID scores of 206.02 and 0.159 Ā± (0.004) respectively. Additionally, RePaintā€™s FID scores for grape leaf diseases were 69.05, outperforming other published methods such as DCGAN (309.376), LeafGAN (178.256), and InstaGAN (114.28). For tomato leaf diseases, RePaint achieved an FID score of 161.35, surpassing other methods like WGAN (226.08), SAGAN (229.7233), and InstaGAN (236.61).DiscussionThis study offers valuable insights into the potential of diffusion models for data augmentation in plant disease detection, paving the way for future research in this promising field

    Crop-saving with AI: latest trends in deep learning techniques for plant pathology

    Get PDF
    Plant diseases pose a major threat to agricultural production and the food supply chain, as they expose plants to potentially disruptive pathogens that can affect the lives of those who are associated with it. Deep learning has been applied in a range of fields such as object detection, autonomous vehicles, fraud detection etc. Several researchers have tried to implement deep learning techniques in precision agriculture. However, there are pros and cons to the approaches they have opted for disease detection and identification. In this survey, we have made an attempt to capture the significant advancements in machine-learning based disease detection. We have discussed prevalent datasets and techniques that have been employed as well as highlighted emerging approaches being used for plant disease detection. By exploring these advancements, we aim to present a comprehensive overview of the prominent approaches in precision agriculture, along with their associated challenges and potential improvements. This paper delves into the challenges associated with the implementation and briefly discusses the future trends. Overall, this paper presents a birdā€™s eye view of plant disease datasets, deep learning techniques, their accuracies and the challenges associated with them. Our insights will serve as a valuable resource for researchers and practitioners in the field. We hope that this survey will inform and inspire future research efforts, ultimately leading to improved precision agriculture practices and enhanced crop health management

    Prediction on the Seasonal Behavior of Hydrogen Sulfide Using a Neural Network Model

    Get PDF
    Models to predict seasonal hydrogen sulfide (H2S) concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H2S were collected from August 2005 to Fall 2006 from a huge industrial complex located in Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized model is built for each dataset. These optimized models were then used for the analysis of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to rainfall during the spring and summer. In the autumn, its sensitivity showed a strong dependency on wind speed and pressure. Pressure was identified as the most influential parameter during the spring and summer. In the autumn, relative humidity overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship with a number of parameters (e.g., radiation, wind speed, or dew-point temperature). In contrast, it exhibited a declining trend with a decrease in pressure. An increase in radiation was likely to decrease during spring and summer, but the opposite trend was predicted for the autumn. The overall results of this study thus suggest that the behavior of H2S can be accounted for by a diverse combination of meteorological parameters across seasons

    Growth rate of early-stage hepatocellular carcinoma in patients with chronic liver disease

    Get PDF
    Background/AimsThe goal of this study was to estimate the growth rate of hepatocellular carcinoma (HCC) and identify the host factors that significantly affect this rate.MethodsPatients with early-stage HCC (n=175) who underwent two or more serial dynamic imaging studies without any anticancer treatment at two tertiary care hospitals in Korea were identified. For each patient, the tumor volume doubling time (TVDT) of HCC was calculated by comparing tumor volumes between serial imaging studies. Clinical and laboratory data were obtained from the medical records of the patients.ResultsThe median TVDT was 85.7 days, with a range of 11 to 851.2 days. Multiple linear regression revealed that the initial tumor diameter (a tumor factor) and the etiology of chronic liver disease (a host factor) were significantly associated with the TVDT. The TVDT was shorter when the initial tumor diameter was smaller, and was shorter in HCC related to hepatitis B virus (HBV) infection than in HCC related to hepatitis C virus (HCV) infection (median, 76.8 days vs. 137.2 days; P=0.0234).ConclusionsThe etiology of chronic liver disease is a host factor that may significantly affect the growth rate of early-stage HCC, since HBV-associated HCC grows faster than HCV-associated HCC

    Clinical Practice Guideline for Accurate Diagnosis and Effective Treatment of Gastrointestinal Stromal Tumor in Korea

    Get PDF
    Despite the rarity in incidence and prevalence, gastrointestinal stromal tumor (GIST) has emerged as a distinct pathogenetic entity. And the clinical management of GIST has been evolving very rapidly due to the recent recognition of its oncogenic signal transduction pathway and the introduction of new molecular-targeted therapy. Successful management of GIST requires a multidisciplinary approach firmly based on accurate histopathologic diagnosis. However, there was no standardized guideline for the management of Korean GIST patients. In 2007, the Korean GIST study group (KGSG) published the first guideline for optimal diagnosis and treatment of GIST in Korea. As the second version of the guideline, we herein have updated recent clinical recommendations and reflected changes in diagnosis, surgical and medical treatments for more optimal clinical practice for GIST in Korea. We hope the guideline can be of help in enhancing the quality of diagnosis by members of the Korean associate of physicians involving in GIST patients's care and subsequently in achieving optimal efficacy of treatment

    Generating Synthetic Disguised Faces with Cycle-Consistency Loss and an Automated Filtering Algorithm

    No full text
    Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial recognition algorithms in these challenges is the limited amount of suitable training data. This lack of training data can be addressed by creating a database with the subjects having several disguises, but this is an expensive process. Another approach is to use generative adversarial networks to synthesize facial images with the required disguise add-ons. In this paper, we present a synthetic disguised face database for the training and evaluation of robust facial recognition algorithms. Furthermore, we present a methodology for generating synthetic facial images for the desired disguise add-ons. Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup, and glasses, from normal face images. Additionally, an automated filtering scheme is presented for automated data filtering from the synthesized faces. Finally, facial recognition experiments are performed on the proposed synthetic data to show the efficacy of the proposed methodology and the presented database. Training on the proposed database achieves an improvement in the rank-1 recognition rate (68.3%), over a model trained on the original nondisguised face images

    Generating Synthetic Disguised Faces with Cycle-Consistency Loss and an Automated Filtering Algorithm

    No full text
    Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial recognition algorithms in these challenges is the limited amount of suitable training data. This lack of training data can be addressed by creating a database with the subjects having several disguises, but this is an expensive process. Another approach is to use generative adversarial networks to synthesize facial images with the required disguise add-ons. In this paper, we present a synthetic disguised face database for the training and evaluation of robust facial recognition algorithms. Furthermore, we present a methodology for generating synthetic facial images for the desired disguise add-ons. Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup, and glasses, from normal face images. Additionally, an automated filtering scheme is presented for automated data filtering from the synthesized faces. Finally, facial recognition experiments are performed on the proposed synthetic data to show the efficacy of the proposed methodology and the presented database. Training on the proposed database achieves an improvement in the rank-1 recognition rate (68.3%), over a model trained on the original nondisguised face images

    Multiple Object Tracking in Deep Learning Approaches: A Survey

    No full text
    Object tracking is a fundamental computer vision problem that refers to a set of methods proposed to precisely track the motion trajectory of an object in a video. Multiple Object Tracking (MOT) is a subclass of object tracking that has received growing interest due to its academic and commercial potential. Although numerous methods have been introduced to cope with this problem, many challenges remain to be solved, such as severe object occlusion and abrupt appearance changes. This paper focuses on giving a thorough review of the evolution of MOT in recent decades, investigating the recent advances in MOT, and showing some potential directions for future work. The primary contributions include: (1) a detailed description of the MOTā€™s main problems and solutions, (2) a categorization of the previous MOT algorithms into 12 approaches and discussion of the main procedures for each category, (3) a review of the benchmark datasets and standard evaluation methods for evaluating the MOT, (4) a discussion of various MOT challenges and solutions by analyzing the related references, and (5) a summary of the latest MOT technologies and recent MOT trends using the mentioned MOT categories
    corecore